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Abstract
A field-theoretic description of the critical behaviour of the weakly disordered
systems with p-component order parameter is given. Directly, for three-
dimensional systems a renormalization analysis of the effective replicated
Hamiltonian of a model with replica symmetry breaking (RSB) potentials is
carried out in the two-loop approximation. For the case with first-step RSB
the fixed points (FPs) corresponding to stability of the various types of critical
behaviour are identified with the use of the Padé–Borel summation technique.
Analysis of FPs has shown a stability of the critical behaviour of the weakly
disordered systems with respect to RSB effects and realization of the former
scenario of disorder influence on critical behaviour.

PACS numbers: 6460A, 6460

The effects produced by weak quenched disorder on critical phenomena have been studied
for many years [1–5]. According to the Harris criterion [1], the disorder affects the critical
behaviour only if α, the specific heat exponent of the pure system, is positive. In this case a
new universal critical behaviour, with new critical exponents, is established. In contrast, when
α < 0, the disorder appears to be irrelevant for the critical behaviour.

In dealing with the weak quenched disorder the traditional approach is the replica
method [4, 5], and in terms of replicas all the results obtained for the disorder systems
correspond to the so-called replica-symmetric (RS) solutions. Physically this means that only
a unique ground state is assumed to be relevant for the observable thermodynamics. However,
in a number of papers [6–8] ideas about replica symmetry breaking (RSB) in the systems
with quenched disorder were presented. For the first time in [6] physical arguments showing
that in the presence of the quenched disorder there exist numerous local minimal-energy
configurations separated by finite barriers and a demonstration of how the summation over these
local minimum configurations can provide additional RSB interaction potentials for fluctuating
fields were offered. The renormalization group (RG) description of the classical φ4 model with
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RSB potentials was presented in the one-loop approximation using ε-expansion [6–8]. It was
shown that the RSB degrees of freedom produce a dramatic effect on the asymptotic behaviour
of the RG flows, such that for a general type of RSB there exist no stable fixed points (FPs),
and RG equations arrive in the strong-coupling regime.

However, our numerous investigations of pure and disordered systems performed in the
two-loop and higher orders of the approximation for the three-dimensional system directly
together with methods of series summation show that the predictions made in the lowest order
of the approximation, especially on the basis of the ε-expansion, can differ strongly from the
real critical behaviour [9]. Therefore, the results of RSB effect investigation in [6–8] must be
reconsidered with the use of a more accurate field-theoretic approach in the higher orders of
the approximation.

In this Letter, we realize the field-theoretical RG description in the two-loop approximation
of the three-dimensional model of the weakly disordered systems with RSB interaction
potentials of forth order on fluctuating fields. We carry out the solution of the RG equations
with the use of the series summation method and the analysis of stability of various types of
critical behaviour with respect to RSB effects.

We consider an O(p)-symmetric Ginzburg–Landau–Wilson model of a spin system with
weak quenched disorder near the critical point given by the Hamiltonian

H =
∫

ddx

{
1
2

p∑
i=1

[∇φi(x)]2 + 1
2 [τ − δτ(x)]

p∑
i=1

φ2
i (x) + 1

4 g

p∑
i,j=1

φ2
i (x)φ2

j (x)

}
(1)

where φi(x) is the p-component order parameter and δτ(x) is the Gaussian-distributed random
transition temperature with the second moment of distribution 〈〈(δτ (x))2〉〉 ∼ u defined by
the positive constant u, which is proportional to the concentration of defects. The use of the
standard replica trick gives us the possibility to easily average over the disorder and reduce the
task of statistical description of the weakly disordered system with the Hamiltonian (1) to the
homogeneous system with the effective Hamiltonian

Hn =
∫

ddx

{
1
2

p∑
i=1

n∑
a=1

[[∇φa
i (x)]2 + τ [φa

i (x)]2] + 1
4

p∑
i,j=1

n∑
a,b=1

gab[φa
i (x)]2[φb

j (x)]2

}
(2)

which is a functional of n replications of the original order parameter with an additional vertex
u in the RS matrix gab = gδab − u. The properties of the original disordered system are
obtained in the replica number limit n → 0. The following standard RG procedure based on
the statistical calculation of the contribution to the partition function of long-wavelength order
parameter fluctuations around the global minimum state with φ(x) = 0 gives us the possibility
to find the various types of critical behaviour and conditions of their stability and carry out the
calculation of critical exponents.

However, as shown in [6–8], the fluctuations of random transition temperature δτ(x) for
[τ−δτ(x)] < 0 can lead to realization in a system of numerous regions with φ(x) �= 0 displayed
through the numerous local minimal-energy configurations separated from the ground state
by finite barriers. In this case the direct application of the traditional RS RG scheme may
be questioned. For statistical description of such systems near the phase transition point the
Parisi RSB scheme was used in [6–8] by analogy with spin glasses [10]. It was argued that
spontaneous RSB can occur due to the interaction of the fluctuating fields with the local non-
perturbative degrees of freedom from the multiple-local-minimum solutions of the mean-field
equations. It was shown that the summation over these solutions in the replica partition function
can provide the additional non-trivial RSB potential

∑
a,b gabφ2

aφ2
b in which the matrix gab has

the Parisi RSB structure [10]. According to the technique of the Parisi RSB algebra, in the limit
n → 0 the matrix gab is parametrized in terms of its diagonal elements g̃ and the off-diagonal
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function g(x) defined in the interval 0 < x < 1: gab → (g̃, g(x)). The operations with the
matrices gab are given by the following rules:

gk
ab → (g̃k; gk(x)), (ĝ2)ab =

n∑
c=1

gacgcb → (c̃; c(x)), (ĝ3)ab

=
n∑

c,d=1

gacgcdgdb → (d̃; d(x)) (3)

where

c̃ = g̃2 −
∫ 1

0
dx g2(x)

c(x) = 2

[
g̃ −

∫ 1

0
dy g(y)

]
g(x) −

∫ x

0
dy [g(x) − g(y)]2

(4)

d̃ = c̃g̃ −
∫ 1

0
dx c(x)g(x)

d(x) =
[
g̃ −

∫ 1

0
dy g(y)

]
c(x) +

[
c̃ −

∫ 1

0
dy c(y)

]
g(x)

−
∫ x

0
dy [g(x) − g(y)][c(x) − c(y)].

(5)

The RS situation corresponds to the case g(x) = const independent of x.
We carried out the field-theoretical RG description of the three-dimensional model with the

effective replicated Hamiltonian (2) in which the matrix gab has the RSB structure in the two-
loop approximation. In the field-theoretic approach the asymptotic critical behaviour of sys-
tems in the fluctuation region is determined by the Callan–Symanzik RG equation for the vertex
parts of the irreducible Green functions. To calculate the β functions as functions of the renor-
malized elements of the matrix gab appearing in the RG equation, we used the method based on
the Feynman diagram technique and the renormalization procedure [11]. We obtained the fol-
lowing expressions for the two-point vertex function �(2) and four-point vertex functions �

(4)
ab :

∂�(2)

∂k2

∣∣∣∣
k2=0

= 1 + 4fg2
aa + 2pf

n∑
c=1

gacgca (6)

�
(4)
ab |ki=0 = gab − p

n∑
c=1

gacgcb − 4gaagab − 4g2
ab + (8 + 16h)g3

ab + (24 + 8h)g2
aagab

+48hgaag2
ab + 4gaagbbgab + 8ph
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c=1

gacg
2
cb + 8phgab

n∑
c=1

gacgcb

+4phgab

n∑
c=1

g2
ac + 2p

n∑
c=1

gacgccgcb

+4pgaa

n∑
c=1

gacgcb + p2
n∑

c,d=1

gacgcdgdb (7)

where

f (d) = − 1

J 2

∂

∂k2

∫
ddk1 ddk2

(k2
1 + 1)(k2

2 + 1)((k1 + k2 + k)2 + 1)

∣∣∣∣
k2=0

(8)

h(d) = 1

J 2

∫
ddk1 ddk2

(k2
1 + 1)2(k2

2 + 1)((k1 + k2)2 + 1)
(9)
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J =
∫

ddk/(k2 + 1)2 f (d = 3) = 2
27 h(d = 3) = 2

3 (10)

and made the redefinition gab → gab/J . However, the following renormalization procedure for
vertex functions is made difficult because of complicated expressions (3)–(4) for the operations
with the matrices gab. The steplike structure of the function g(x) revealed in [6–8] gives us the
possibility to realize the renormalization procedure. In this Letter we considered only the matri-
ces gab which have the structure known as the one-step RSB with function g(x) of the next view:

g(x) =
{

g0 for 0 � x < x0

g1 for x0 < x � 1
(11)

where 0 � x0 � 1 is the coordinate of the step and it remains an arbitrary parameter. The
value of x0 is not changed during the renormalization procedure and remains the same as in
the starting function g0(x). In consequence the RG transformations of the effective replicated
Hamiltonian with RSB potentials are determined by the three parameters g̃, g0 and g1. We
obtained the β functions in the two-loop approximation in the form of the expansion series in
renormalized parameters g̃, g0 and g1:

β1 = −g̃ + (p + 8)g̃2 − px0g0
2 − p(1 − x0)g1

2 − 4
27 (41p + 190)g̃3

+ 92
27 px0g̃g0

2 + 92
27 p(1 − x0)g̃g1

2 − 8
3 px0g0

3 − 8
3 p(1 − x0)g1

3

β2 = −g0 − (4 − 2px0)g0
2 + (4 + 2p)g̃g0 + 2p(1 − x0)g0g1

+ 16
3 ( 77

36 px0 − 1)g0
3 − 92

27 (p + 2)g̃2g0 − 8
3 (2px0 − 5p − 6)g̃g0

2

+ 40
3 p(1 − x0)g0

2g1 − 52
27 p(1 − x0)g0g1

2 − 16
3 p(1 − x0)g̃g0g1

β3 = −g1 − (px0 − 2p + 4)g1
2 + px0g0

2 + (4 + 2p)g̃g1

−( 92
27 px0 − 308

27 p + 16
3 )g1

3 + 8
3 px0g0

3 − 92
27 (p + 2)g̃2g1

− 8
3 px0g̃g0

2 + ( 8
3 px0 + 8p + 16)g̃g1

2 + 20
27 px0g0

2g1.

(12)

By analogy with papers [6–8] we changed ga �=b → −ga �=b in the expressions (12) for the β

functions, so that the off-diagonal elements ga �=b would be positively defined.
It is well known that perturbation series are asymptotic series, and that the vertices

describing the interaction of the order parameter fluctuations in the fluctuating region τ → 0
are large enough that expressions (12) cannot be used directly. For this reason, to extract the
required physical information from the obtained expressions, we employed the Padé–Borel
approximation of the summation of asymptotic series extended to the multiparameter case.
The direct and inverse Borel transformations for the multiparameter case have the form

f (g̃, g0, g1) =
∑
i,j,k

cijkg̃ig
j

0 gk
1 =

∫ ∞

0
e−tF (g̃t, g0t, g1t) dt

F (g̃, g0, g1) =
∑
i,j,k

cijk

(i + j + k)!
g̃ig

j

0 gk
1 .

(13)

A series in the auxiliary variable θ is introduced for analytical continuation of the Borel
transform of the function

F̃ (g̃, g0, g1, θ) =
∞∑

k=0

θk
k∑

i=0

k−i∑
j=0

ci,j,k−i−j

k!
g̃ig

j

0 g
k−i−j

1 (14)

to which the [L/M] Padé approximation is applied at the point θ = 1. To perform the analytical
continuation, the Padé approximant of [L/1] type may be used, which is known to provide rather
good results for various Landau–Wilson models (see, e.g. [12,13]). The property of preserving
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Table 1. Coordinates of the FPs and eigenvalues of the stability matrix for p = 1.

Type x0 g̃∗ g∗
0 g∗

1 λ1 λ2 λ3

1 0.177 4103 0 0 0.653 55 −0.169 24 −0.169 24
2 0.184 3726 0.081 2240 0.081 2240 0.525 ± 0.089i 0.211
3 0.0 0.184 3726 0 0.081 2240 0.525 319 ± 0.089 273i −0.039 167

0.1 0.183 9722 0 0.082 9404 0.535 185 ± 0.098 291i −0.049 185
0.2 0.183 5134 0 0.084 6432 0.547 065 ± 0.106 665i −0.059 851
0.3 0.182 9917 0 0.086 3186 0.560 666 ± 0.113 305i −0.071 187
0.4 0.182 4035 0 0.087 9503 0.576 473 ± 0.118 038i −0.083 210
0.5 0.181 7458 0 0.089 5200 0.595 060 ± 0.120 271i −0.095 927
0.6 0.181 0165 0 0.091 0067 0.617 241 ± 0.118 872i −0.109 334
0.7 0.180 2154 0 0.092 3872 0.643 936 ± 0.111 389i −0.123 415
0.8 0.179 3442 0 0.093 6384 0.675 972 ± 0.092 079i −0.138 133
0.9 0.178 4070 0 0.094 7426 0.713 456 ± 0.035 266i −0.153 431
1.0 0.177 4103 0 0.095 6920 0.857 325 0.653 55 −0.169 237

Table 2. Coordinates of the FPs and eigenvalues of the stability matrix for p = 2.

Type x0 g̃∗ g∗
0 g∗

1 λ1 λ2 λ3

1 0.155 8303 0 0 0.667 315 −0.001 672 −0.001 672
2 0.155 8310 0.000 5837 0.000 5837 0.667 312 0.001 682 0.000 004
3 0.0 0.155 8310 0 0.000 5837 0.667 313 0.001 683 −0.000 001

0.1 0.155 8310 0 0.000 6143 0.667 313 0.001 684 −0.000 088
0.2 0.155 8310 0 0.000 6483 0.667 313 0.001 685 −0.000 186
0.3 0.155 8310 0 0.000 6863 0.667 313 0.001 686 −0.000 296
0.4 0.155 8310 0 0.000 7291 0.667 313 0.001 687 −0.000 419
0.5 0.155 8310 0 0.000 7775 0.667 313 0.001 687 −0.000 559
0.6 0.155 8309 0 0.000 8327 0.667 313 0.001 688 −0.000 717
0.7 0.155 8308 0 0.000 8964 0.667 314 0.001 690 −0.000 901
0.8 0.155 8307 0 0.000 9707 0.667 314 0.001 692 −0.001 116
0.9 0.155 8306 0 0.001 0583 0.667 315 0.001 694 −0.001 369
1.0 0.155 8303 0 0.001 1633 0.667 316 0.001 696 −0.001 672

the symmetry of a system during application of the Padé approximation by the θ method, as
in [12], has become important for multivertex models. We used the [2/1] approximant to
calculate the β functions in the two-loop approximation.

The nature of the critical behaviour is determined by the existence of a stable FP satisfying
the system of equations

βk(g̃∗, g∗
0 , g∗

1) = 0 (k = 1, 2, 3). (15)

We have found three types of non-trivial FP in the physical region of parameter space
g̃∗, g∗

0 , g∗
1 � 0 for different values of p = 1, 2, 3, which are presented in tables 1–3 (the

exception was made in the case with p = 3: when presented table 3 the coordinates of type II
and III FPs are characterized by unphysical negative values of g∗

0 and g∗
1 ). Type I with g̃∗ �= 0,

g∗
0 = g∗

1 = 0 corresponds to the RS FP of a pure system, type II with g̃∗ �= 0, g∗
0 = g∗

1 �= 0 is a
disorder-induced RS FP and type III with g̃∗ �= 0, g∗

0 = 0, g∗
1 �= 0 corresponds to the one-step

RSB FP. The values of parameters g̃∗, g∗
1 for the one-step RSB FP depend on the coordinate of

the step x0, and we present in tables 1–3 the received values of these parameters in the range
0 � x0 � 1 with changes through the step $x0 = 0.1.
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Table 3. Coordinates of the FPs and eigenvalues of the stability matrix for p = 3.

Type x0 g̃∗ g∗
0 g∗

1 λ1 λ2 λ3

1 0.138 2700 0 0 0.681 378 0.131 537 0.131 537
2 0.141 9323 −0.035 8629 −0.035 8629 0.672 676 −0.089 135 −0.005 783
3 0.0 0.141 9323 0 −0.035 8629 0.672 676 −0.089 135 −0.005 783

0.1 0.141 9931 0 −0.038 1865 0.672 729 −0.086 515 0.001 104
0.2 0.142 0386 0 −0.040 8334 0.672 845 −0.083 560 0.008 802
0.3 0.142 0600 0 −0.043 8761 0.673 046 −0.080 206 0.017 469
0.4 0.142 0441 0 −0.047 4104 0.673 361 −0.076 366 0.027 299
0.5 0.141 9699 0 −0.051 5650 0.673 831 −0.071 931 0.038 540
0.6 0.141 8040 0 −0.056 5177 0.674 509 −0.066 754 0.051 518
0.7 0.141 4913 0 −0.062 5193 0.675 476 −0.060 636 0.066 656
0.8 0.140 9374 0 −0.069 9349 0.676 837 −0.053 299 0.084 517
0.9 0.139 9720 0 −0.079 3131 0.678 742 −0.044 336 0.105 835
1.0 0.138 2700 0 −0.091 5089 0.681 378 −0.033 124 0.131 537

The type of critical behaviour of this disordered system for each value of p is determined
by the stability of the corresponding FP. The requirement that the FP be stable reduces to the
condition that the eigenvalues λi of the matrix

Bi,j = ∂βi(g̃
∗, g∗

0 , g∗
1)

∂gj

(16)

lie in the right-hand side complex half-plane.
Analysis of the values λi for FPs presented in tables 1–3 shows that for the Ising model

(p = 1) and the XY model (p = 2) the disorder-induced RS FPs are stable. However, we
believe that in the higher field-theoretic orders of approximation the RS FP of a pure system
will be stable for the XY model. Two facts indicate this: the weak stability of the disorder-
induced RS FP and that in the two-loop approximation the marginal value of pc = 2.0114 for
the borderline between regions of stability for the disorder-induced RS FP and the RS FP of a
pure system. In the higher orders of approximation the marginal value of pc < 2, such as the
specific heat exponent α > 0 for the pure XY model. For the Heisenberg model (p = 3) the
RS FP of a pure system is stable and both other types of FP are characterized by unphysical
values of coordinates g∗

0 and g∗
1 .

The obtained RS FP values for vertices g̃, g0 and the eigenvalues λ1 and λ2 of the
stability matrix correspond to results of paper [14], in which a field-theoretic treatment of
disordered three-dimensional spin systems was presented in the two-loop approximation. The
vertices v1 and v2 introduced in [14] are connected with the vertices g̃ and g0 by the relations
v1 = (p + 8)(g̃ + g0) + 9g0 and v2 = 8g0. We have calculated the static critical exponents
from the γ functions in the corresponding stable RS FPs resummed by the generalized Padé–
Borel method (table 4). For comparison we also present in table 4 values of the critical
exponents from [15, 16] received for pure and disordered three-dimensional systems without
RSB in the six-loop approximation. Comparison of the exponent values shows that their
differences are not more than 0.01. This gives us the possibility to consider our results of the
RSB effect investigation as reliable. The model with RSB potentials is another example of
the multivertex models [12] for which the predictions made on the basis of the ε-expansion
can differ strongly from results of the use of a more accurate field-theoretic approach for
the three-dimensional system directly together with methods of series summation. This
situation is explained by the competition of numerous types of FP in the parameter space
of the multivertex models. Therefore, the spread of results of the ε-expansion from ε � 1 to
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Table 4. Critical exponents of the three-dimensional models for RS FPs.

Model FP η ν γ β α

Ising RS1 this work 0.028 0.631 1.244 0.324 0.107
[15] 0.031(4) 0.630(2) 1.241(2) 0.325(2) 0.110(5)
RS2 this work 0.028 0.672 1.329 0.345 −0.015
[16] 0.030(3) 0.678(10) 1.330(17) 0.349(5) −0.034(30)

XY RS1 this work 0.029 0.667 1.318 0.34 −0.001
[15] 0.034(3) 0.669(1) 1.316(1) 0.346(1) −0.007(6)

Heisenberg RS1 this work 0.028 0.697 1.379 0.369 −0.092
[15] 0.034(3) 0.705(1) 1.387(1) 0.364(1) −0.115(9)

ε = 1 is impossible, as a rule, without intersection of the stability ranges for the various types
of FP.

Thus, the RG investigations carried out in the two-loop approximation show the stability
of the critical behaviour of weakly disordered three-dimensional systems with respect to the
RSB effects. In dilute Ising-like systems the disorder-induced critical behaviour is realized
with a RS FP. The weak disorder is irrelevant for the critical behaviour of systems with a
multicomponent order parameter although the proof for systems with a two-component order
parameter demands calculations in the higher orders of approximation. The possible influence
of the RSB degrees of freedom on the critical behaviour of highly disordered systems can be
nonperturbatively revealed by the use of the Monte Carlo simulation method [17] for definition
of the probability distributions for the order parameter and random transition temperature
fluctuations. At the present time our group is carrying out the Monte Carlo simulation of the
disordered three-dimensional Ising model to check this possibility.

We would like to thank the Russian Foundation for Basic Research for support through grant
no 00-02-16455.
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